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We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy in
the framework of thed-dimensional spherical model with a power law long-ranged interaction decaying at
large distancesr as r−d−s, wheres,d,2s and 0,sø2. For a film geometry and under periodic boundary
conditions we consider the behavior of these quantities near the bulk critical temperatureTc, as well as for
T.Tc andT,Tc. The universal finite-size scaling function governing the behavior of the force in the critical
region is derived and its asymptotics are investigated. While in the critical and subcritical region the force is of
the order ofL−d, for T.Tc it decays asL−d−s, whereL is the thickness of the film. We consider both the case
of a finite system that has no phase transition of its own, whend−1,s, as well as the case withd−1.s,
when one observes a dimensional crossover fromd to ad−1 dimensional critical behavior. The behavior of the
force along the phase coexistence line for a magnetic fieldH=0 andT,Tc is also derived. We have proven
analytically that the excess free energy is always negative and monotonically increasing function ofT andH.
For the Casimir force we have demonstrated that for anysù1 it is everywhere negative, i.e., an attraction
between the surfaces bounding the system is to be observed. AtT=Tc the force is an increasing function ofT
for s.1 and a decreasing one fors,1. For anyd ands the minimum of the force atT=Tc is always achieved
at someHÞ0.
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I. INTRODUCTION

When a fluid is confined in a film geometry with a thick-
nessL, the boundary conditions which the order parameter
has to fulfill at the surfaces bounding the system lead to aL
dependence of the excess free energy. On its turn, the last
lead to a force, conjugated toL, which is called the Casimir
(solvation) force and the corresponding effect—the thermo-
dynamic Casimir effect. In this form it has been discussed
for the first time by Fisher and de Gennes in 1978[1]. The
effect is dubbed so after the Dutch physicist Hendrik Casimir
who first, in 1948[2], predicted it considering the influence
of the zero-point quantum mechanical vacuum fluctuations
of the electromagnetic field on the resulting force between
two infinite perfectly conducting planes placed against each
other. In that form the effect is known as the quantum me-
chanical Casimir effect. For a long time the effect was con-
sidered as a theoretical curiosity but the interest in it has
blossomed in the past decade. Numerous calculations and
experiments have been performed both on the thermody-
namic and the quantum Casimir effect. For a review on the
thermodynamic effect the interested reader might consult
[3–5], and for the quantum one[6–9].

The Casimir force in statistical-mechanical systems at a
temperatureT and in the presence of an external magnetic
field H is characterized by the excess free energy due to the

finite-size contributionsto the total free energy of the system.
In the case of a film geometryL3`2, and under given
boundary conditionst imposed across the directionL, the
Casimir force is defined as

FCasimir
t sT,H,Ld = −

] ft
exsT,H,Ld

] L
, s1.1d

where ft
exsT,H ,Ld is the excess free energy

ft
exsT,H,Ld = ftsT,H,Ld − LfbulksT,Hd. s1.2d

Here ftsT,H ,Ld is the full free energy per unit area and per
kBT, and fbulksT,Hd is the corresponding bulk free energy
density. According to the standard finite-size scaling theory
[5,10], under periodic boundary conditionst=p near the
critical point T=Tc,H=0 (of the bulk system) one expects

fp
exsT,H,Ld = L−sd−1dXf

spdsatL1/n,bhLD/nd, s1.3d

wherefrom one has

FCasimir
spd sT,H,Ld = L−dXCasimir

spd satL1/n,bhLD/nd. s1.4d

Here the universal scaling functions of the free energy
Xf

spdsx1,x2d and the Casimir forceXCasimr
spd sx1,x2d are related

via the relation
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XCasimir
spd sx1,x2d = sd − 1dXf

spdsx1,x2d −
1

n
x1

]

] x1
Xf

spdsx1,x2d

−
D

n
x2

]

] x2
Xf

spdsx1,x2d, s1.5d

D and n are the standard critical exponents,a and b are
nonuniversal metric factors,t=sT−Tcd /Tc is the reduced
temperature andh=bH, with b=skBTd−1. We recall that, ac-
cording to the general theory of the thermodynamic Casimir
effect [3–5], XCasimir

spd sx1,x2d is supposed to be negative under
periodic boundary conditions(which corresponds to a mutual
attraction of the “surfaces” bounding the system). The
boundaries influence the system to a depth given by the bulk
correlation lengthj`sTd,uT−Tcu−n, where n is its critical
exponent. Whenj`sTd!L the Casimir force, as afluctuation
induced forcebetween the plates, is negligible. The force
becomes long-ranged whenj`sTd diverges nearand below
the bulk critical pointTc in an Osnd ,nù2 model system in
the absence of an external magnetic field[11–13]. Therefore
in statistical-mechanical systems one can turn on and off the
Casimir effect merely by changing, e.g., the temperature of
the system.

The temperature dependence of the Casimir force for two-
dimensional systems has been investigated exactly only on
the example of Ising strips[14]. In Osnd models forT.Tc

the temperature dependence of the force has been considered
in [11]. The only example where it is investigated exactly as
a function of both the temperature and of the magnetic field
scaling variables is that of the three-dimensional spherical
model with short range interaction under periodic boundary
conditions[12,13,15]. There results for the Casimir force in a
mean-spherical model withL3`d−1 geometry, 2,d,4,
have been derived. The force is consistent with anattraction
of the plates confining the system. In[16] some of the results
of [12,13] have been extended to a quantum version of the
model. There the interaction has been taken to be long-
ranged, with 0,sø2, wheres /2,d,3s /2, and the cor-
responding quantum phase transition has been considered to
take place atT=0. Very recently in[15], based on a derived
there stress-tensor-like operator for critical lattice systems,
the scaling functions of the force for the 3D Ising,XY and
Heisenberg models have been obtained by Monte Carlo
methods. The results suggest that, under periodic boundary
conditions, the scaling functionXCasimir

spd sxd /n of all Osnd
models practically coincide for largex, say, forx=L /j*2,
wherej is the true bulk correlation length. The last increases
the helpfulness of the spherical model results(i.e., of the
results corresponding to the limitn→`), which are available
in an explicit analytic form.

Most of the results for the Casimir force are available
only at T=Tc, i.e., for the Casimir amplitudes. They are ob-
tained ford=2 by using conformal-invariance methods for a
large class of models[3]. FordÞ2 results for the amplitudes
are available via field-theoretical renormalization group
theory in 4−« dimensions[3,11,17], Migdal-Kadanoff real-
space renormalization group methods[18], and by Monte
Carlo methods[15,19]. In addition to the flat geometries

some results about the Casimir amplitudes between spherical
particles in a critical fluid have been derived too[17,20]. For
the purposes of experimental verification that type of geom-
etry seems especially suitable. Ford=3 the only exactly
known amplitude is that one for the spherical model[13]. In
the cased=s the amplitude is also known[16] for the quan-
tum version of the model with long-ranged power-law inter-
action (in that case the amplitude in question characterizes
the leading temperature correction to the ground state of the
quantum system).

It should be noted that in contrast to the quantum me-
chanical Casimir effect, that has been tested experimentally
with high accuracy[21–24] (for a recent review on the ex-
isting experiments see, e.g.[25]), the statistical-mechanical
Casimir effect lacks so far a quantitatively satisfactory ex-
perimental verification. Nevertheless, one has to stress that
all the existing experiments[26–29] are in a qualitative
agreement with the theoretical predictions.

In this paper a theory of the scaling properties of the
Casimir force of a spherical model with a power-lawleading
long-ranged interaction(decreasing at long distancesr as
1/rd+s, with 0,sø2, ands,d,2s) is presented. The re-
sults represent an extension to leading long-ranged interac-
tion of the corresponding ones for system with short-ranged
interaction[12,13]. The latter results, as we will see, can be
reobtained by formally taking the limits→2− in the expres-
sions pertinent to the case of long-ranged interactions.

For the kind of systems we investigate here the interaction
enter the exact expressions for the free energy only through
their Fourier transform which leading asymptotic behavior is
Usqd,asqs* [5,30], wheres* =mins2,sd. As it was shown
for bulk systems by renormalization group argumentssù2
corresponds to the case of subleading long-ranged interac-
tions, i.e., the universality class then does not depend ons
[31] and coincides with that one of systems with short-
ranged interactions. Values satisfying 0,s,2 correspond
to leading long-ranged interactions and the critical behavior
depends then ons (see Refs.[32,33] and references therein).
In the current work we will restrict ourselves to the consid-
eration of this case only. The other case of subleading long-
ranged interaction, i.e., whens.2 is also of interest(involv-
ing, e.g., a serious modification of the standard finite-size
scaling theory, see, e.g.[33–37]), but will be considered else-
where[38]. For the current understanding of the critical be-
havior of finite systems with long-range interaction the inter-
ested reader is invited to consult Ref.[33].

The investigation of the Casimir effect in classical sys-
tems with long-ranged(either leading or subleading) interac-
tion possesses some peculiarities in comparison with the
short-range system. Due to the long-range character of the
interaction there exists a natural attraction between the sur-
faces bounding the system. One easily can estimate that in
systems with real boundaries(i.e., with no translational in-
variance) in the ordered state theL-dependent part of the
excess free energy that is raised by the direct interparticle
(spin) interaction is of the order ofL−s+1. In the critical re-
gion one still has some effects stemming from that interac-
tion on the background of which develops the fluctuating
induced new attraction between the surfaces that is in fact the
critical Casimir force. In the definition(1.1) used here, that is
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the common one when one considers short-range systems,
these effects are superposed simultaneously. An interesting
case when forces of similar origin are acting simultaneously
is that one of the wetting when the wetting layer is nearly
critical and intrudes between two noncritical phases if one
takes into account the effect of long-range correlations and
that one of the(subleading) long-range van der Waals forces
[39–41]. In the current article we will investigate the inter-
play of these forces in the case ofleading long-ranged inter-
action whenperiodic boundary conditions are applied, i.e.,
the system does not possess real boundaries. The Casimir
force in systems with subleading(van der Waals type) inter-
action and with a broken translational invariance(i.e. pos-
sessing real physical boundaries) is a subject of investigation
in a series of treatments[37,42–49]. There, in principle, one
has to take into account both the long-ranged effects due to
the interaction of the bounded system(say, a fluid), with the
substrate of the surfaces, and, as well, the fluid-fluid long-
ranged (van der Waals) interaction (which is, as a rule,
treated as a short-ranged one because of the very severe tech-
nical difficulties its treatment involves). Since all these in-
vestigations were mainly concerned with the effects due to
the existence of real surfaces in the system, which is not the
case of a system under periodic boundary conditions, here
we will not provide further details but will direct the inter-
ested reader to the references cited above and the literature
cited therein.

The structure of the current article is as follows. In Sec. II
we briefly describe the spherical model[which, in systems
with a translational invariance, is equivalent to then→`
limit of the Osnd models] and give all basic expressions
needed to investigate the behavior of the Casimir force. In
Sec. III we derive the scaling function of the excess free
energy and the Casimir force, and investigate the leading
asymptotic behavior of the force both above and below the
critical point. In Sec. IV we consider in some details the
behavior of the force along the phase coexistence line
T,Tc,H=0. In Sec. V we investigate the monotonicity
properties of the excess free energy, and the Casimir force,
and prove analytically that both the excess free energy and
the force are negative for anyT andH (for s.1). The last
implies that the force between the boundary surfaces of the
system is always attractive. The article closes with a discus-
sion given in Sec. VI. The technical details needed in the
main text are organized in a series of Appendices.

II. THE MODEL

We consider the ferromagnetic mean spherical model with
long-range interaction confined to a fully finite
d-dimensional hypercubic latticeLd of N= uLdu sites. The
model is defined by

H = −
1

2o
i j

Ji jSiS j − Ho
i

Si , s2.1d

whereSi is the spin variable at sitei ,Ji j is the interaction
matrix between spins at sitesi and j , andH is an ordering
external magnetic field. The long-wave length asymptotic

form of the Fourier transformJsqd of the interaction poten-
tial Ji j is

Jsqd < Js0df1 − rsvssqdg, uqu → 0, rs . 0.

We suppose that the interaction in the system is long-ranged
with 0,s,2 implying vssqd.uqus. This corresponds to the
inverse power-law behaviorJsrd, r−d−s, for large spin sepa-
rations r = ur u. The spins in the model under consideration
obey the spherical constraint

o
i

kSi
2l = N, s2.2d

wherek¯l denotes standard thermodynamic averages taken
with the HamiltonianH andN is the total number of spins
located at sitesi of finite hypercubic latticeLd of size L1
3L23 ¯Ld=N (hereLi are the linear sizes of the system
measured in units of the lattice constants).

Under periodic boundary conditions imposed along the
finite directions of the system, the free energy density of the
model is given by[5]

bFd,ssb,H,L uLd =
1

2
sup
f.0
HUd,ssf,L uLd + lnFbJs0drs

2p
G

−
bH2

Js0drsf
− bJs0drsSf +

1

rs
DJ ,

s2.3ad

where

Ud,ssf,L uLd =
1

N
o
q

lnff + vssqdg. s2.3bd

Here the vectorq has the componentshq1,q2,… ,qdj where
qj =2pnj /Lj and nj P h−Mj ,… ,Mj −1j with Mj =LjL j / s2pd
@1 being integer numbers, andL j the cutoff at the bound-
aries of the first Brillouin zone along thej direction. The
spherical fieldf is introduced to ensure the fulfillment of the
constraint(2.2). It is the solution of the equation

bJs0drsS1 −
H2

f2J2s0drs
2D =

1

N
o
q

1

f + vssqd
. s2.3cd

Equations(2.3a) and (2.3c) contain all the necessary in-
formation for the investigation of the critical behavior of the
model under consideration.

In the bulk limit, when all the sizes of the system are
infinite, thed-dimensional sums over the momentum vector
q in Eqs.(2.3b) and (2.3c) transform into integrals over the
first Brillouin zone. For example one has

Ud,ssfuLd =
1

s2pddE
−L

L

dq1 ¯ E
−L

L

dqdlnff

+ vssq1,q2,…,qddg. s2.4d

By analyzing the equation for the spherical field(2.3c) in
the bulk limit it is easy to show that the system exhibits a
phase transition ford.s at the critical point,bc, given by
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bcJs0drs =
1

s2pddE
−L

L

dq1 ¯ E
−L

L

dqd
1

vssq1,q2…,qdd
.

s2.5d

III. SCALING FORM OF THE EXCESS FREE ENERGY
AND THE CRITICAL CASIMIR FORCE

In the remainder we consider a system with a film geom-
etry L3`d−1, which results after taking the limitsL2
→` ,… ,Ld→` and settingL1=L. For the simplicity of no-
tations we will only consider the case when all cutoff vari-
ables are taken to be equal to each other, i.e.,Li =L , i
=1,… ,d. ThenUd,ssf ,L uLd becomes

Ud,ssf,LuLd =
1

L
o
q1

1

s2pdd−1E
−L

L

dq2 ¯ E
−L

L

dqdlnff

+ vssq1,q2,…,qddg. s3.1d

As it has been shown in[50], a sum of the above type[with
vssqd.uqus ,0,sø2] can be evaluated using the Poisson
summation formula and the identity

lns1 + zad = aE
0

` dx

x
s1 − e−zxdEas− xad, s3.2d

whereEasxd;Ea,1sxd, and

Ea,bszd = o
k=0

`
zk

Gsak + bd
s3.3d

are the Mittag-Leffler functions. For a review on the proper-
ties ofEa,bszd and other related to them functions, as well as
for their application in statistical and continuum mechanics,
see Refs.[50,51]. The properties used in the current article
are summarized in Appendix A.

After some algebra for the full free energy density we get

bFd,ssb,H,Ld = bFd,ssb,Hd −
1

2
L−dKd,ssLsfd, s3.4d

where

Fd,ssb,Hd ; lim
L→`

Fd,ssb,H,Ld,

and

Kd,ssyd =
s

s4pdd/2o
l=1

` E
0

`

dxx−d/2−1expS−
l2

4x
D

3Es/2,1s− xs/2yd, s3.5d

The main advantage of the above expression for the free
energy, despite its complicated form in comparison to Eq.
(2.3a), is the simplified dependence on the sizeL which now
enters onlyvia the arguments of some functions. This gives
the possibility, as it is explained below, to obtain the scaling
functions of the excess free energy and the Casimir force. It
is worthwhile noting that under a sharp cutoffL a special
care has to be taken when performing finite-size scaling cal-

culations in order to avoid receiving artificial, i.e., not exist-
ing in real systems, finite-sizeL-dependent contributions.
This question is considered in detail in[37]. In obtaining Eq.
(3.4) the suggested there recipe has been applied[see Eq.
(27) in [37] and the discussion devoted to it]. According to
these findings, for the finite-size contributions in the follow-
ing we are going to send the cutoff to infinity.

In Eq. (3.4), f is the solution of the corresponding spheri-
cal field equation that follows by requiring the partial deriva-
tive of the right-hand side of Eq.(3.4) with respect tof to be
zero. Let us denote the solution of the corresponding bulk
spherical equation byf`. Then, for the excess free energy
(per unit area) it is possible to obtain from Eqs.(1.2) and
(3.4) the finite size scaling form, valid fors,d,2s,

fexsb,H,Ludd = bL−sd−1dXfsx1,x2d, s3.6d

with scaling variables

x1 = sb − bcdJs0drsL1/n s3.7ad

and

x2 = HLD/nÎb/Js0drs. s3.7bd

Here n=1/sd−sd and D=sd+sd / f2sd−sdg are the critical
exponents of the spherical model(for s,d,2s, and
0,sø2). Notice that, according to the definitions(3.7a)
and(3.7b), the subcritical regionT,Tc corresponds to posi-
tive values ofx1. In Eq. (3.6) the universal scaling function
xexsx1,x2d of the excess free energy has the form

Xfsx1,x2d = −
1

2
x2

2S 1

yL
−

1

y`
D −

1

2
x1syL − y`d

−
s

2d
uDd,susyL

d/s − y`
d/sd −

1

2
Kd,ssyLd, s3.8d

where theyL=fLLs ,y`=f`Ls, and

Dd,s = 2pFs4pdd/2GSd

2
Ds sinSpd

s
DG−1

. s3.9d

In Eq. (3.8) yL is the solution of the spherical field equa-
tion for the finite system obtained by minimizing the free
energy with respect toyL

x1 =
x2

2

yL
2 − uDd,suyL

d/s−1 −
]

] yL
Kd,ssyLd. s3.10d

For the infinite system the corresponding equation is

x1 =
x2

2

y`
2 − uDd,suy`

d/s−1. s3.11d

According to Eq.(1.1), the finite-size scaling function of
the Casimir force for the system under consideration is
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XCasimirsx1,x2d =
s + 1

2
x2

2S 1

yL
−

1

y`
D −

s − 1

2
x1syL − y`d

−
ssd − 1d

2d
uDd,susyL

d/s − y`
d/sd

−
1

2
sd − 1dKd,ssyLd. s3.12d

Note that in the limits→2− Eqs.(3.6)–(3.12) reproduce
exactly the corresponding ones for the case of the short-
range interaction[12,13,15]. In such a case the above equa-
tions simplify greatly since thenE1,1szd=expszd, and the
function Kd,ssyd defined in Eq.(3.5) becomes

Kd,2syd =
4

s2pdd/2yd/4o
l=1

`

l−d/2Kd/2slÎyd, s3.13d

whereKn is the modified Bessel function.
In the present article we will concentrate on the investi-

gation of the behavior of the Casimir force and the excess
free energy in different regions of the phase diagram. We
will also evaluate some critical amplitudes for selected val-
ues of the parametersd and s. The analysis will be done
analytically for the cases where one can obtain simple ex-
pressions and is then extended numerically to cases which
are not accessible by analytical means.

First, let us note that when the interaction becomes more
long-ranged, i.e.,s decreases, the finite-size corrections due
to the direct interaction between the surfaces delimiting the
system becomes stronger implying an increase of the modu-
lus of the Casimir amplitudeXfs0,0d. In Fig. 1 we present
the numerical evaluation of the Casimir amplitudes as a
function ofd for some selected values ofs. The results show
that the amplitude is indeed an increasing function ofd at
fixed s, and an increasing function ofs at a fixedd. Note
also that in accordance with the general expectations, the
amplitudes are negative.

In order to obtain the amplitudes, one needs to know the
value ofyLsTd at the critical pointT=Tc that is the solution
of the equation for the spherical field(3.10). These results

have their own important physical meaning. We recall thatyL
is directly connected to the finite-size correlation lengthjL

=LyL
−1/s of the system[5]. The results foryLsTcd are shown in

Fig. 2.
In Fig. 3 we present our results for the Casimir force

evaluated at the bulk critical point of the model as a function
of d for some selected values ofs. We observe that the
Casimir force behaves in a different way depending on
whether s is smaller or larger thans=1. For sø1 it is
decreasing monotonically as a function ofd, while for s.1
it is not.

In the following we turn our attention to the investigation
of the thermodynamic functions of interest as a function of
the scaling variablex1 for fixed d ands. Let us first consider
the situations where it is possible to obtain some results ana-
lytically.

Let us first consider the asymptotic forms of the excess
free energy and the Casimir force in the subcritical region
(i.e., T&Tc). Taking into account that then(i.e., whenx1
@1,x2=0), according to Eqs.(3.10) and (3.11) yL→0+,y`

FIG. 1. Behavior of the Casimir amplitude as a function ofd. FIG. 2. Behavior of the scaling variableyL as a function ofd at
the critical pointT=Tc. We recall that the finite-size correlation
lengthjL is related toyL via jL=LyL

−1/s [5].

FIG. 3. The behavior of the Casimir force atT=Tc as a function
of d.
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=0, as well as the asymptotic(B13) of the functionKd,ssyLd
for small values of the argument(derived in Appendix B) it
is easy to see that below the critical temperature

Xfsx1 → `,0d . −
s

2pd/2GSd

2
Dzsdd, s3.14d

and

XCasimirsx1 → `,0d . −
ssd − 1d

2pd/2 GSd

2
Dzsdd. s3.15d

The above results reflect the dominating contribution of the
Goldstone modes in the subcritical-regime of an Osnd
model—both the excess free energy and the Casimir force
scaling functions do not tend exponentially-in-L to zero, but
to finite constants. Fors=2 these constants coincide with
those known from short-range systems(see, e.g.[15] and the
references cited therein). Note also that, in contrast with sys-
tems with real boundaries, the direct interspin long ranged
interaction belowTc does not lead to aL−ss−1d contribution,
which is well known from studies of van der Waals systems
exhibiting wetting phase transitions[39,52]. This is due to
the application of periodic boundary conditions, i.e., the sys-
tem under consideration lacks real physical boundaries.

Let us consider the critical behavior of the force forT.Tc
in a bit more details. Then, whenx2=0 andx1→−` from
Eqs.(3.10) and (3.11) one obtainsyL.y`s1+«d,sd, where

«d,s =
ad,s

s d
s − 1duDd,suy`

d/s+1 , s3.16d

and

y` = S ux1u
uDd,suD

a/sd−sd

. s3.17d

Therefore, the leading behavior of the scaling function of the
force in that region is

XCasimir. − Ad,sy`
−1 . − Ad,sfsbc

− bdJs0drs/uDd,sug−s/sd−sdL−s, s3.18d

where

Ad,s =
ad,s

2
ss + d − 1d. s3.19d

Equation (3.18), valid for 0,s,2, implies that above
Tc,FCasimir.−X+utu−gL−sd+sd, with g=s / sd−sd, and X+.0,
i.e., the force remains attractive and decays in a power-in-L
and not in an exponentially-in-L way, as it is in systems with
short ranged interactions. This behavior is in full correspon-
dence with the long-ranged character of the interaction.
Similar also, as it has been recently established, is the behav-
ior of the Casimir force and the excess free energy in sys-
tems with van der Waals type interaction[37] (see also[38]),
despite that their critical exponents are those of the short-
ranged systems.

The obtained analytical results are supported by numeri-
cal analysis of the expressions for the scaling functions of the
excess free energy and the Casimir force at zero external

field. The corresponding data is presented in Fig. 4(for the
excess free energy) and in Fig. 5(for the Casimir force).
While the scaling function of the excess free energy is mono-
tonic regardless of the used values ofd ands, the behavior
of Casimir force depends strongly on the range of the inter-
actions. Fors.1 it is monotonically increasing as it can be
seen from the cases=2, corresponding to short range inter-
action, and the long-range case withs=1.5. For s=1 the
monotonicity changes andXCasimirsx1,0d becomes decreasing
for values ofs,1. As example we show its behavior for
s=0.75.

We close this section by presenting the outcome of the
numerical analysis of the behavior of the scaling functions of
the excess free energy, shown in Fig. 6, and that of the Ca-

FIG. 4. The universal finite-size scaling function of the excess
free energyXfsx1,0d from Eq. (3.8) as a function of −x1,sT
−TcdL1/n, for some selected values ofs at zero external magnetic
field. One observes that, in full accordance with the corresponding
statement from Sec. V,XCasimirsx1,0d is a monotonically increasing
function of the temperatureT regardless of value ofs.

FIG. 5. The universal finite-size scaling function of the Casimir
force XCasimirsx1,0d as a function of the scaling variable −x1,sT
−TcdL1/n, at zero external magnetic fieldH=0. One observes that, in
full accordance with the corresponding statement from Sec. V,
XCasimirsx1,0d is a monotonically increasing function of the tem-
peratureT (for s.1) and possesses a complex behavior forsø1.

H. CHAMATI AND D. M. DANTCHEV PHYSICAL REVIEW E 70, 066106(2004)

066106-6



simir force, shown in Fig. 7, as a function of the scaling
variablex2 at the bulk critical temperature. One observes that
the excess free energy is a monotonically increasing function
of the external magnetic fieldH independently of the range
of the interaction. However the Casimir force is anonmono-
tonic function ofH andhas a minimum at x2Þ0 which depth
depends of the parameters. The minimum is found to be at
x2=0.084, 0.145, 0.263, and 0.416 fors=2, 1.5, 1, and 0.75,
respectively. So, as long ass goes smaller the minimum
becomes deeper. Indeed the ratio of the Casimir force evalu-
ated at the minimum to its value atH=0 is a decreasing
function of s. It is given by 1.017, 1.073, 1.215, and 1.513
for s=2, 1.5, 1, and 0.75, respectively.

IV. CASIMIR (SOLVATION) FORCE ALONG THE PHASE
COEXISTENCE LINE

Here we investigate the behavior of the Casimir force
along the lineH=0 whenT,Tc. This is a line of a first order
phase transition with respect to the magnetic fieldH. The
finite-size rounding of the first-order transitions in Osnd
models has been already studied by Fisher and Privman in
[53] for a fully finite and cylinder geometries. Later their
predictions have been verified in details for the spherical
model system with such a geometry in[54], while in [55,56]
their arguments have been extended to a geometry of the
type Ld−d83`d8, whered8 has been chosen so that no phase
transition of its own exists in the finite system, i.e.,d8,s
has been supposed. Here we extend these investigations to
cover also the casesd8=s andd8.s in systems with a film
geometry, i.e., whend8=d−1. We will be only interested in
the behavior of the Casimir force.

For T,Tc and smallH Eqs. (3.6)–(3.12) are still valid,
but there the limityL!1 has to be taken(i.e., we suppose
that x1@x2

2). As it is clear from Eq.(B13), then there are
three subcases to be considered.

(i) The case d−1,s. Then in the finite system there is
no phase transition on its own. For the excess free energy
one obtains

fexsb,Hd = −
s

2pd/2Gsd/2dzsddL−sd−1d + bm0HL

3H1 −
1

2
Sm0

mL
+

mL

m0
D +

s

2sd − 1d
Sm0

mL
−

mL

m0
DJ ,

s4.1d

where

mL

m0
=ÎFuDd−1,su

2xm
G2

+ 1 −
uDd−1,su

2xm
. s4.2d

Here mL=H / frsJs0dfg is the magnetization of the finite
system,m0=Î1−T/Tc is the spontaneous magnetization,
andxm=bm0sTdLjL

d−1H, which has the meaning of the ratio
of the total magnetic energy in the correlated volume
Vcor=LjL

d−1 to the thermal energykBT per degree of free-
dom, is the scaling variable.sWe recall that in the spheri-
cal model the true finite-size correlation lengthjL is equal
to f−1/s f5,56g.d Next, it is easy to see from Eq.s4.2d that
xm=Os1d involves H=OsL−s/s1+s−ddd, that is the scale on
which the jump in the bulk magnetization is rounded off.
From this observation and from Eq.s4.1d one obtains that
the H dependent correction to the Casimir force is then of
the order of L−s/s1+s−dd. fNote that s / s1+s−dd.d for
d.s, and, so, the term proportional toH in Eq. s4.1d will
indeed contribute as a correction towards the Casimir
force.g

(ii ) The case d−1=s. This is the borderline case between
the one when in the finite system there is no phase transition
of its own (for d−1,s) and the one in which in the finite
system there is such a phase transition(for d−1.s). In this
case an essential singular point exists in the finite-size sys-
tem atT=H=0. For the excess free energy one now obtains

FIG. 6. The universal finite-size scaling function of the excess
free energyXfs0,x2d, for some values ofs, as a function of the
scaling variablex2,HLD/n at the bulk critical pointT=Tc. One
observesXfs0,x2d is a monotonically increasing function of the
field H for arbitrarys.

FIG. 7. The universal finite-size scaling function of the Casimir
force XCasimir, for some values ofs, as a function of the scaling
variablex2,HLD/n at the bulk critical temperatureT=Tc. One ob-
serves thatXCasimirs0,x2d is not a monotonically increasing function
of the fieldH for all values ofsø2 including the short-range case.
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fexsb,Hd = −
s

2pd/2Gsd/2dzsddL−sd−1d + bm0HLH1 −
m0

mL
J ,

s4.3d

where

mL

m0
=ÎF 1

s4pds/2Gss/2d
1

x̄m
G2

+ 1 +
1

s4pds/2Gss/2d
1

x̄m

s4.4d

and x̄m=bm0sTdHLjL
d−1/ lnsL /jLd. The above equations are

to be compared with the previous case. One observes, that
the main difference is the existence of logarithmic-in-L
dependence that is introduced via the scaling field vari-
able x̄m. As a result the rounding of the jump in the mag-
netization takes place on a scale given byH
=L−sexps−constLd, i.e., the scale in this case is exponen-
tially small in L.

(iii ) The case d−1.s. In this case there is a true phase
transition of its own in the finite system at someTc,L=Tc
−«L−1/n, i.e., no rounding of the jump of the magnetization is
possible. One only observesL-dependent corrections of the
finite-size magnetizationmL with respect to the spontaneous
magnetizationm0. One finds that the crossover fromd to d
−1 critical behavior happens atTc,L with

« =
psd−1d/2

s2pds

Cd,s

Gsd/2d
1

bcJs0drs

, s4.5d

and, whenuHuLs!1,

fexsb,Hd = −
s

2pd/2Gsd/2dzsddL−sd−1d + bm0HL
a

Ld−s ,

s4.6d

with

a =
psd−1d/2

2s2pds

Cd,s

Gsd/2d
1

bm0
2sTdJs0drs

, s4.7d

andmL.m0s1−a/2d.
Finally, we would like to note that in Osnd systems one

observes forT,Tc in addition to the rounding of the jump of
the order parameter also rounding of the spin wave singulari-
ties. According to the general theory[53,54], their rounding
occurs on the scale for whichxs= uHuLs=Os1d. As it is clear
from Eq.(3.7) [and taking into account that ifT,Tc one can
rewrite x1 as x1=bm0sTd2rsJs0d, with x1@1] the scale on
which the rounding of the spin wave singularities sets in
involves thatx1,x2

2 there. Then, in this regime, the solution
of the spherical field equations for the finite and the infinite
system (3.10) and (3.11) will be again yL=Os1d and y`

=Os1d. Sincex1 and x2 can be expressed from Eqs.(3.10)
and(3.11) in terms ofyL andy`, we conclude that, according
to Eq. (3.12), in the regime in which the spin waves are of
importance, the Casimir force will beFCasimir=OsL−dd, pos-
sessing a nontrivialH dependence. If one would like to re-
veal more on this dependence the numerical treatment is un-
avoidable. Note that when the field is strong enough to
suppress the spin-wave excitations, i.e., whenxs@1 and

T,Tc, one will have an Ising-like system. In this regime
yL@1,y`@1, and the Casimir force will be of the order of
L−sd+sd [see Eq.(3.18)] under periodic boundary conditions.
(If the system was possessing real bounding surfaces like,
say, under Dirichlet-Drichlet boundary conditions, one would
expect that the corresponding contribution in the force is of
the order ofL−s.)

V. MONOTONICITY PROPERTIES OF THE EXCESS
FREE ENERGY AND THE CASIMIR FORCE

Let us denote bygLsx2,yd and g`sx2,yd the right-hand
side of Eqs.(3.10) and (3.11), respectively. Now we prove
that (i) gLsx2,yd.g`sx2,yd and (ii ) that gLsx2,yd and
g`sx2,yd are monotonically decreasing functions ofy.

(i) First, let us note thatEa,bs−xd is a completely mono-
tonic function ofxù0 [57–60] for 0,aø1 andbùa. (In
[57] this property was shown to hold forEa,1s−xd;Eas−xd
and was later extended toEa,bs−xd in [58] and[59]; see also
[60].) This means that for alln=0, 1, 2, 3,… one has

s− 1dndnEa,bs− xd
dxn ù 0, x ù 0, 0, a ø 1, b ù a.

s5.1d

Then, from n=0 it immediately follows thatEa,as−xd.0
whenxù0. Now, from Eqs.(3.10) and(3.11), it immediately
follows thatgLsx2,yd.g`sx2,yd.

(ii ) The required property follows from the monotonicity
of the functionEa,as−xd for xù0 and the explicit form of the
right-hand sides of Eqs.(3.10) and (3.11).

Having proved(i) and (ii ), it is easy to understand now
that for any given valuesx1 and x2 of the scaling variables
the solution of the spherical field equation for the finite sys-
tem will be larger than that for the infinite system, i.e.,
yLsx1,x2d.y`sx1,x2d. (Since the correlation lengths in the
finite and the infinite system arejL=yL

−1/s andj`=y`
−1/s [5],

correspondingly, the physical meaning of the above result is
that the correlation length of the finite system is always
smaller than that of the infinite one.) We are then ready to
prove the following.

(A) For x1ù0 and x2=0 the excess free energy scaling
function is negative, i.e., Xfsx1ù0,x2=0d,0.

(B) The excess free energy scaling function Xfsx1,x2d is a
monotonically increasing function of the temperature T and
the magnetic fielduHu.

Let us start with statement(A).
(A) From the explicit form of the Eq.(3.8) it is clear that

the statement(A) will be true if Ea,1s−xdù0 whenxù0. The
last follows from Eq.(5.1) for n=0, and, thus,Xfsx1,x2d,0.

Let us now prove the statement(B).
(B) From Eq.(3.8) one obtains

] Xf

] x1
=

1

2
sy` − yLd , 0, s5.2d

and

] Xf

] x2
= x2S 1

y`

−
1

yL
D . 0. s5.3d
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Equation(5.2) implies thatXfsx1,x2d is a monotonically in-
creasing function of T, whereas Eq.(5.3) states thatit is a
monotonically increasing function ofuHu too.

Using (B) one can now prove the following.
(C) The excess free energy scaling function is negative for

any T and H, i.e., Xfsx1,x2d,0 for any x1 and x2.
Indeed, from the monotonicity property(B) and from(A)

it is clear that in order to prove(C) it is enough to show that
it holds for values ofT above Tc, i.e., whenyL@1 andy`

@1. Then, from Eqs.(3.10) and (3.11) and the asymptotic
(B14) one obtainsyL=y`s1+«d ,0,«!1, where

« =
ad,s

y`
2f2

x2
2

y`
2 + uDd,suy`

d/s−1s d
s − 1d + 2

ad,s

y`
2 g

. s5.4d

Next, from Eq.(3.8) it follows that

Xfsx1,x2d . −
1

2

ad,s

y`

s1 − «d , 0. s5.5d

Thus the excess free energy is indeed always negative.
Finally, we prove that the following.
(D) For sù1 the Casimir force is always negative, i.e., it

is a force of attraction between the surfaces bounding the
system.

We start by multiplying Eq.(3.11) with y` and Eq.(3.10)
with yL, and then adding the results together. One obtains

x1syL − y`d = x2
2S 1

yL
−

1

y`
D − uDd,susyL

d/s − y`
d/sd

− yL
d

dyL
Kd,ssyLd. s5.6d

Inserting the above expression in Eq.(3.12), one obtains

XCasimirsx1,x2d = x2
2S 1

yL
−

1

y`
D −

1

2
S1 −

s

d
DuDd,susyL

d/s − y`
d/sd

−
1

2
sd − 1dKd,ssyLd +

s − 1

2
yL

d

dyL
Kd,ssyLd.

s5.7d

Since, according to what already has been proven,yL.y`,
and Kd,ssyLd is a positive and monotonically decreasing
function of yL [the last follows from the explicit form of
Kd,ssyLd given in Eq.(3.5) and the property(5.1) of Ea,1sxd
for n=0 andn=1], from the above expression one immedi-
ately confirms the validity of statement.(D). In addition,
from Eq. (3.12) it is easy to see thatXCasimirsx1,x2d,0 also
for s,1 if x1ø0, i.e., for TùTc. Furthermore, from Eqs.
(1.5) and (3.12) it follows that

]

] x1
XCasimirsx1 = 0,x2 = 0d = −

s − 1

2
yL,c, s5.8d

where from we conclude, that atT=Tc the Casimir force is
an increasing function ofT for s.1 (see Fig. 5), and a
decreasing function ofT whens,1 (see Fig. 5). Therefore,
at the critical point the monotonicity of the force changes as
a function ofs at s=1 where we have an inflexion point.

VI. DISCUSSION

In the current article we consider the behavior of the ex-
cess finite-size free energy and the Casimir(solvation) force
in a classical system with leading long range interactions in
the limit n→` of the Osnd models(i.e., within the spherical
model). In this limit, the model has the peculiarity of being
exactly solvable and in the same time the ability to describe
in a convincing way the basic features of the physical behav-
ior of Osnd systems with finite number of component spinsn.
This is very useful if one later tries to investigate more real-
istic models using either numerical(say Monte Carlo) or
more elaborate analytical techniques. Furthermore, as it has
been already pointed out in the Introduction the scaling func-
tionsXCasimir

spd sxd /n of the Casimir force for the 3D Ising,XY,
Heisenberg and Spherical models with short-ranged interac-
tions practically coincide[15] if x=L /j*2, wherej is the
true bulk correlation length. One might expect the same to be
true also for the case of leading long-ranged interactions in
such systems.

In the current treatment the dimensionalityd of the mod-
els and the parameter controlling the range of the interaction
s are chosen so, that the hyperscaling is kept valid, i.e.,
s,d,2s is supposed. In this regime the critical exponents
depend ons. We demonstrate that, despite of the choice of
s, the excess free energy scaling functionXf (see Fig. 4 and
Fig. 6) is a monotonic function of the temperatureT and the
magnetic fieldH, with Xf being always a negative function.
Surprisingly, to a given extend, the above properties do not
hold in such a general fashion for the Casimir(solvation)
force(see Fig. 5 and Fig. 7). This is in line with the results of
Sec. V where we show analytically that the force is attractive
for any T andsù1, as well as for anyTùTc if s,1. The
monotonicity of the force turns out to depend ons. For
example, ifs.1 at T=Tc andH=0 the force is an increas-
ing function ofT andL−1, while for s,1 it is a decreasing
function of bothT and L−1 at this point[see Eq.(5.8) and
Fig. 5]. In addition, one derives that forT=Tc the minimum
of the force isnot at H=0 (see Fig. 7). Indeed, atT=Tc the
minimum has been found to be at somefinite value of the
scaling field variablex2,HLD/n. For s=2, 1.5, 1, and 0.75
the minimum atT=Tc is found to be atx2.0.084, 0.145,
0.263, and 0.416, respectively. Such an occurrence of a force
minimum for a nonzero bulk field has also been reported for
the case ofs+, +d boundary conditions[46,47]. Here, in this
Section, we provide more details for the universal finite-size
scaling function of the Casimir forceXCasimirsx1,x2d present-
ing the numerical results for it as a function of bothx1 and
x2ù0 in Fig. 8. There the effects due to both the temperature
and the magnetic field are demonstrated[we recall thatx1
,sT−TcdL1/n ,x2,HLD/n]. We observe that forT,Tc and
HÞ0 a valley shows up in the vicinity of the critical tem-
perature that disappears for temperatures far away from the
critical point. More precisely, one observes that there exists a
finite valuex1

* of x1, such that for anyx1
* .x1ù0 there is a

local minimum of the force at some finitex2,min, i.e., atH
Þ0. Forx1.x1

* there is no such minimum at nonzeroH. In
Fig. 8 the last is shown for the casess=0.75, 1, 1.5 ands
=2 (the short-range case). Note, that fors=0.75 one needs
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to go deeply in the subcritical region to find out where ex-
actly the valley vanishes. In the short-range cases=2 we
established thatx1

* .0.28.
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APPENDIX A: SOME PROPERTIES OF THE MITTAG-
LEFFLER TYPE FUNCTIONS

The Mittag-Leffler type functions are defined by the
power series[51]:

Ea,bszd = o
k=0

`
zk

Gsak + bd
, a,b . 0. sA1d

They are entire functions of finite order of growth. The func-
tions are named after Mittag-Leffler who first considered the
particular caseb=1. These function are very popular in the
field of fractional calculus(for a recent review see Ref.[51]).

One of the most useful property of these functions is the
identity [51]

1

1 + z
=E

0

`

dx e−xxb−1Ea,bs− xazd, sA2d

which is obtained by means of term-by-term integration of
the series(A1). The integral in Eq.(A2) converges in the
complex plane to the left of the line Rez1/a=1,uargzu
ø

1
2ap. The identity(A2) lies in the basis of the mathemati-

cal investigation of finite-size scaling in the spherical model
with algebraically decaying long-range interaction(see Ref.
[5] and references therein).

In some particular cases the functionsEa,bszd reduce to
known functions. For example, in the case corresponding to
the short range case we have

E1,1szd = expszd. sA3d

Setting z=y−a ,y.0, and x= ty, we obtain the Laplace
transform

ya−b

1 + ya =E
0

`

dt e−yttb−1Ea,bs− tad sA4d

from which we derive the useful identity

1

1 + za =E
0

`

dxexps− xzdxa−1Ea,as− xad, sA5d

by settingb=a.
The asymptotic behavior for large arguments of the

Mittag-Leffler functions is given by the Lemma[61].
Let 0,a,2,b be an arbitrary complex number, andg be

a real number obeying the condition

1

2
ap , g , minhp,apj.

Then for any integerpù1 the following asymptotic expres-
sions hold whenuzu→`.

At uargzuøg,

FIG. 8. The universal finite-size scaling function of the Casimir
force as a function of scaling variablesx1 andx2 for some values of
the parameters and the corresponding values ofd. The visualiza-
tion is limited to positive values ofx2 since the function is even in
H.
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Ea,bszd =
1

a
zs1−bd/aez1/a

− o
k=1

`
z−k

Gsb − akd
+ Osuzu−p−1d.

sA6d

At gø uargzuøp,

Ea,bszd = − o
k=1

`
z−k

Gsb − akd
+ Osuzu−p−1d. sA7d

APPENDIX B: ASYMPTOTICS OF THE
FUNCTION Kd,s„y…

Here we will evaluate the asymptotic behaviors of the
auxiliary functionKd,ssyd used in the expression of the free
energy and the quantities descending from it. It is defined by

Kd,ssyd =
s

2s4pdd/2E
0

`

dx x−d/2−1FAS 1

4x
D − 1G

3Es/2,1s− xs/2yd, sB1ad

where

Asud = o
l=−`

`

e−ul2. sB1bd

Using the identity

Ea,1s− zd = 1 −zEa,a+1s− zd, sB2d

it is possible to write down Eq.(B1a) in a more convenient
form, which will allow us to extract the asymptotics of the
function under investigation. After some algebra one obtains

Kd,ssyd = sp−d/2GSd

2
Dzsdd −

s

2
Id,ssyd, sB3ad

where we have introduced the auxiliary function

Id,ssyd =
y

s4pdd/2E
0

`

dx xs/2−d/2−1FAS 1

4x
D − 1G

3Es/2,s/2+1s− xs/2yd. sB3bd

Now, settingx=zs2pd−2 and with the help of the identity

Asud =Îp

u
ASp2

u
D , sB4d

we rewrite Eq.(B3b) (after some algebra) in the form

Id,ssyd = y
psd−1d/2

s2pds E
0

`

dx xs/2−d/2−1/2FAsxd −Îp

x
− 1G

3Es/2,s/2+1S− y
xs/2

s2pdsD + y
psd−1d/2

s2pds

3E
0

`

dx xs/2−d/2−1/2Es/2,s/2+1S− y
xs/2

s2pdsD . sB5d

The integral in the second term of the right-hand side of
Eq. (B5) can be evaluated exactly with the help of the iden-
tities

u−n =
1

GfngE0

`

dt tn−1e−ut sB6d

and

E
0

`

um−1lnsa + bund = Sa

b
Dm/n p

sinspm/nd
sB7d

to yield the result

2sd − 1d−1Dd−1,sysd−1d/s. sB8d

For the evaluation of the first integral in the right hand
side of Eq.(B5), we note that the two terms in the square
brackets in Eq.(B5) cannot be integrated separately, since
they diverge. Nevertheless, it is possible to outwit this diver-
gence, by transforming further Eq.(B5) by adding and sub-
tracting from the functionEa,a+1szd its asymptotic behavior
at small arguments, leading, after some algebra, to

2
y

s

psd−1d/2

s2pds

Cd,s

Gfs/2g
− 2d−1Dd,syd/s + Rd,ssyd. sB9ad

Here we introduced the notations

Cd,s =E
0

`

dx xs/2−d/2−1/2F2o
l=1

`

e−xl2 −Îp

xG, d − 1 , s,

sB9bd

and

Rd,ssyd = 2y
psd−1d/2

s2pds o
l=1

` E
0

`

dx xs/2−d/2−1/2e−xl2

3FEs/2,s/2+1S− y
xs/2

s2pdsD −
1

Gfs
2 + 1gG .

sB9cd

Collecting the above results, we obtain

Kd,ssyd = sp−d/2GSd

2
Dzsdd − ssd − 1d−1Dd−1,sysd−1d/s

− y
psd−1d/2

s2pds

Cd,s

Tfs/2g
+ sd−1Dd,syd/s −

s

2
Rd,ssyd.

sB10d

The constantCd,s introduced in Eq.(B9b) is the so-called
Madelung constant(see, e.g.[62,63])

Cd,s = lim
d→0
H2o

l=1

`
Gfss − d + 1d/2,dl2g

l ss−d+1d/2

−E
−`

`

dl
Gfss − d + 1d/2,dl2g

l ss−d+1d/2 J, d − 1 , s,

sB11d

whereGfa ,xg is the incomplete gamma function. It has been
shown that this constant has a remarkable property of sym-
metry [63], which relates its values in the cased−1,s to
those in the cased−1.s. On the other hand, it has been
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shown thatCd,s can be expressed in terms of the analytic
continuation, overd−1,s, of (for details see[63])

Cd,s = 2p1/2+s−dGSd − s

2
Dzsd − sd, d − 1 . s.

sB12d

Equation (B10) is the general form of the functions
Kd,ssyd. According to Eqs.(B11) and(B12) it can be used to
investigate the critical behavior of the system for any dimen-
sion less thand.

For small y the asymptotic behavior of the function
Kd,ssyd is easily deduced from Eq.(B10). It is given by

Kd,ssyd < 5
s

pd/2GSd

2
Dzsdd − s

uDd−1,su
d − 1

ysd−1d/s, 0 , d − 1 , s,

s

pd/2GSd

2
Dzsdd − 2y†s4pds/2sGfs/2g‡−1s1 − ln yd, s = d − 1,

s

pd/2GSd

2
Dzsdd − y

psd−1d/2

s2pds

Cd,s

Gfs/2g
+ s

uDd−1,su
d − 1

ysd−1d/s, 0 , s , d − 1.
6 sB13d

For largey the asymptotic behavior of the functionKd,ssyd is obtained by substituting the largex behavior of the functions
Ea,bsxd [given in Eq.(A7)] in the definition(B1a). After some calculations one ends up with

Kd,ssyd . ad,sy−1, sB14ad

where

ad,s =
21+s

pd/2

Gfsd + sd/2g
uGf− s/2gu

zsd + sd. sB14bd
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