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We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy in
the framework of thed-dimensional spherical model with a power law long-ranged interaction decaying at
large distances asr %7, whereo<d< 2¢ and 0< ¢<2. For a film geometry and under periodic boundary
conditions we consider the behavior of these quantities near the bulk critical tempérgtaewell as for
T>T, andT<T,. The universal finite-size scaling function governing the behavior of the force in the critical
region is derived and its asymptotics are investigated. While in the critical and subcritical region the force is of
the order ofL™9, for T> T, it decays as "47 whereL is the thickness of the film. We consider both the case
of a finite system that has no phase transition of its own, wheh< o, as well as the case witti-1> o,
when one observes a dimensional crossover fidmad—-1 dimensional critical behavior. The behavior of the
force along the phase coexistence line for a magnetic Hetd andT<T, is also derived. We have proven
analytically that the excess free energy is always negative and monotonically increasing fundtiandifl.

For the Casimir force we have demonstrated that for @myl it is everywhere negative, i.e., an attraction
between the surfaces bounding the system is to be observdd: Rtthe force is an increasing function of
for 0> 1 and a decreasing one faor< 1. For anyd ando the minimum of the force af=T, is always achieved

at someH # 0.
DOI: 10.1103/PhysReVvE.70.066106 PACS nun)er05.70.Jk, 64.60.Fr, 68.15e, 68.35.Rh
[. INTRODUCTION finite-size contribution$o the total free energy of the system.

In the case of a film geometri X «?, and under given

When a fluid is confined in a film geometry with a thick- boundary conditions- imposed across the directidn the
nessL, the boundary conditions which the order parameteicssimir force is defined as

has to fulfill at the surfaces bounding the system lead tto a
dependence of the excess free energy. On its turn, the last

lead to a force, conjugated tg which is called the Casimir Flosmi(T.H,L) =~ m (1.
(solvatior) force and the corresponding effect—the thermo- casimif 727 L’

dynamic Casimir effect. In this form it has been discussed

for the first time by Fisher and de Gennes in 1918 The wheref®(T,H,L) is the excess free energy

effect is dubbed so after the Dutch physicist Hendrik Casimir

who first, in 1948[2], predicted it considering the influence FT,HLL) = F(T,H,L) = LT H). (1.2

of the zero-point quantum mechanical vacuum fluctuations
of the electromagnetic field on the resulting force between
two infinite perfectly conducting planes placed against eacflere f(T,H,L) is the full free energy per unit area and per
other. In that form the effect is known as the quantum meXgT, and f,,(T,H) is the corresponding bulk free energy
chanical Casimir effect. For a long time the effect was con-density. According to the standard finite-size scaling theory
sidered as a theoretical curiosity but the interest in it ha$5,10, under periodic boundary conditions=p near the
blossomed in the past decade. Numerous calculations aratiitical point T=T.,H=0 (of the bulk systemone expects
experiments have been performed both on the thermody-
namic and the quantum Casimir effect. For a review on the (T H,L) = L-@DXP) atLY”, bhLA/7) (1.3
thermodynamic effect the interested reader might consult P f ’ '
[3-5], and for the quantum on&-9].

The Casimir force in statistical-mechanical systems at
temperaturel and in the presence of an external magnetic

gvherefrom one has

field H is characterized by the excess free energy due to the FP i TH, L) = L 9XP . (atlY” bhLY"). (1.4
Here the universal scaling functions of the free energy
*Electronic address: chamati@issp.bas.bg X(fp)(xl,xz) and the Casimir force((cpgsim,(xl,xz) are related
"Electronic address: daniel@imbm.bas.bg via the relation
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® ® 19 some results about the_Casimir amplitudes between spherical
XasimilX1,X2) = (d = )X (X1, Xp) = g X (X1,%2) particles in a critical fluid have been derived {d,20. For
v 1 the purposes of experimental verification that type of geom-
® etry seems especially suitable. Fd=3 the only exactly
X (X1, %), (1.9 known amplitude is that one for the spherical modéd]. In
the casal=c¢ the amplitude is also knowii6] for the quan-
tum version of the model with long-ranged power-law inter-
A and v are the standard critical exponents,and b are  action (in that case the amplitude in question characterizes
nonuniversal metric factorst=(T-T,)/T, is the reduced the leading temperature correction to the ground state of the
temperature anti=H, with 8=(kgT)™%. We recall that, ac- quantum systejn
cording to the general theory of the thermodynamic Casimir It should be noted that in contrast to the quantum me-

effect[3-5] x(P) (X;,%p) is supposed to be negative under chanical Casimir effect, that has been tested experimentally

Casimi . . N
periodic boundary condition@vhich corresponds to a mutual With high accuracy21-24 (for a recent review on the ex-
isting experiments see, e.f25]), the statistical-mechanical

attraction of the "surfaces” bounding the sysjenThe Easimir effect lacks so far a quantitatively satisfactory ex-
boundaries influence the system to a depth given by the buIperimental verification. Nevertheless, one has to stress that

correlation Iengthgx(T)~|T—Tc|‘”., Wherev Is Its crltlgal all the existing experiment§26—29 are in a qualitative
exponent. When.,(T) <L the Casimir force, as #uctuation agreement with the theoretical predictions.

induced forcebetween the pIates., is negligible. The force ~|n this paper a theory of the scaling properties of the
becomes long-ranged whei(T) diverges neaand below  casimir force of a spherical model with a power-liading
the bulk critical pointT; in an Qn),n=2 model system in  |ong-ranged interactioridecreasing at long distancesas
the absence of an external magnetic figlléi-13. Therefore  1/rd*¢ with 0< o <2, ando<d<20) is presented. The re-
in statistical-mechanical systems one can turn on and off theults represent an extension to leading long-ranged interac-
Casimir effect merely by changing, e.g., the temperature ofion of the corresponding ones for system with short-ranged
the system. interaction[12,13. The latter results, as we will see, can be
The temperature dependence of the Casimir force for tworepbtained by formally taking the limit— 2~ in the expres-
dimensional systems has been investigated exactly only osions pertinent to the case of long-ranged interactions.
the example of Ising stripElL4]. In O(n) models forT>T, For the kind of systems we investigate here the interaction
the temperature dependence of the force has been considergster the exact expressions for the free energy only through
in [11]. The only example where it is investigated exactly astheir Fourier transform which leading asymptotic behavior is
a function of both the temperature and of the magnetic fieldJ(q) ~a,q°" [5,30), wheres"=min(2,0). As it was shown
scaling variables is that of the three-dimensional sphericaor bulk systems by renormalization group arguments 2
model with short range interaction under periodic boundarytorresponds to the case of subleading long-ranged interac-
conditions[12,13,19. There results for the Casimir force in a tions, i.e., the universality class then does not depend-on
mean-spherical model with X «%! geometry, 22d<4,  [31] and coincides with that one of systems with short-
have been derived. The force is consistent witlatiraction  ranged interactions. Values satisfying<@ <2 correspond
of the plates confining the system. [lb6] some of the results o leading long-ranged interactions and the critical behavior
of [12,13 have been extended to a quantum version of thejepends then onr (see Refs[32,33 and references thergin
model. There the interaction has been taken to be longm the current work we will restrict ourselves to the consid-
ranged, with <o <2, whereo/2<d<30/2, and the cor-  eration of this case only. The other case of subleading long-
responding quantum phase transition has been considered fignhged interaction, i.e., when>2 is also of interestinvolv-
take place a’=0. Very recently in[15], based on a derived ing, e.g., a serious modification of the standard finite-size
there stress-tensor-like operator for critical lattice systemsscaling theory, see, e.f33-37), but will be considered else-
the scaling functions of the force for the 3D IsingY and  where[38]. For the current understanding of the critical be-
Heisenberg models have been obtained by Monte Carl@avior of finite systems with long-range interaction the inter-
methods. The results suggest that, under periodic boundagsted reader is invited to consult RE3].
conditions, the scaling function(gsimir(x)/n of all O(n) The investigation of the Casimir effect in classical sys-
models practically coincide for large say, forx=L/é=2, tems with long-rangeckither leading or subleadingnterac-
where¢ is the true bulk correlation length. The last increasegion possesses some peculiarities in comparison with the
the helpfulness of the spherical model resyits., of the short-range system. Due to the long-range character of the
results corresponding to the limit— o), which are available interaction there exists a natural attraction between the sur-
in an explicit analytic form. faces bounding the system. One easily can estimate that in
Most of the results for the Casimir force are availablesystems with real boundarig€se., with no translational in-
only atT=T,, i.e., for the Casimir amplitudes. They are ob- variancg in the ordered state the-dependent part of the
tained ford=2 by using conformal-invariance methods for a excess free energy that is raised by the direct interparticle
large class of modelg3]. Ford+ 2 results for the amplitudes (spin) interaction is of the order of ~“**. In the critical re-
are available via field-theoretical renormalization groupgion one still has some effects stemming from that interac-
theory in 4— dimensions[3,11,17, Migdal-Kadanoff real- tion on the background of which develops the fluctuating
space renormalization group methods8], and by Monte induced new attraction between the surfaces that is in fact the
Carlo methods[15,19. In addition to the flat geometries critical Casimir force. In the definitioflL.1) used here, that is
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the common one when one considers short-range systenferm of the Fourier transforng(q) of the interaction poten-
these effects are superposed simultaneously. An interestingl 7; is

case when forces of similar origin are acting simultaneously

is that one of the wetting when the wetting layer is nearly J(@ = JO)[1-p,0,@], |al—0, p,>0.

critical and intrudes between two noncritical phases if on . S .
takes into account the effect of long-range correlations an%fv.e suppose t_hat the Interaction in th_e system is long-ranged
with 0< o< 2 implying w,(q) =|g|?. This corresponds to the

that one of thgsubleading long-range van der Waals forces . . . )

[39—-41]. In the current article we will investigate the inter- inverse power-law bghav!QT(r)~r , for large spin sepa-

play of these forces in the caselefidinglong-ranged inter- rations r=|r|. The SpIns m_the model under consideration

action whenperiodic boundary conditions are applied, i.e., obey the spherical constraint

the system does not possess real boundaries. The Casimir S ($H=N

force in systems with subleadirggan der Waals typeinter- = '

action and with a broken translational invariance. pos-

sessing real physical boundaniés a subject of investigation where(---) denotes standard thermodynamic averages taken

in a series of treatmen{87,42—49. There, in principle, one with the Hamiltonian andN is the total number of spins

has to take into account both the long-ranged effects due tiocated at sites of finite hypercubic latticeCy of size L,

the interaction of the bounded systésay, a fluid, with the XL, X ---Ly=N (hereL; are the linear sizes of the system

substrate of the surfaces, and, as well, the fluid-fluid longmeasured in units of the lattice constants

ranged (van der Waalg interaction (which is, as a rule, Under periodic boundary conditions imposed along the

treated as a short-ranged one because of the very severe tefihite directions of the system, the free energy density of the

nical difficulties its treatment involvgsSince all these in- model is given by[5]

vestigations were mainly concerned with the effects due to

the existence of real surfaces in the system, which is not the 1

case of a system under periodic boundary conditions, here BF4.q(BH,LIA) = Eigg{ud,a(stLM) + In{

we will not provide further details but will direct the inter-

ested reader to the references cited above and the literature _ BH?

cited therein. J0O0)p,d
The structure of the current article is as follows. In Sec. Il

(2.2

BJ(O)pa}
2

o

- BJ(O)pg(¢ + i) } ,

we briefly describe the spherical modethich, in systems (2.33
with a translational invariance, is equivalent to the-  \where

limit of the O(n) model§ and give all basic expressions

needed to investigate the behavior of the Casimir force. In _1

Sec. lll we derive the scaling function of the excess free Ugo(¢,LIA) = N% Inf¢+ wy(A)]. (2.3

energy and the Casimir force, and investigate the leading

asymptotic behavior of the force both above and below thédere the vectoq has the components);,ds,...,qq} where

critical point. In Sec. IV we consider in some details theq;=2mn;/L; and n; e {-M;,...,M;-1} with M;=L;A;/(2m)

behavior of the force along the phase coexistence line>1 being integer numbers, ant} the cutoff at the bound-

T<T.,H=0. In Sec. V we investigate the monotonicity aries of the first Brillouin zone along thi direction. The

properties of the excess free energy, and the Casimir forcgpherical fieldg is introduced to ensure the fulfillment of the

and prove analytically that both the excess free energy andonstraint(2.2). It is the solution of the equation

the force are negative for anyandH (for o> 1). The last

implies that the force between the boundary surfaces of the BIO)p,| 1~ H? _ 12 1 (2.39

system is always attractive. The article closes with a discus- Po HT0)p%) NT dp+oa

sion given in Sec. VI. The technical details needed in the

main text are organized in a series of Appendices. Equations(2.33 and(2.39 contain all the necessary in-
formation for the investigation of the critical behavior of the
model under consideration.

Il. THE MODEL In the bulk limit, when all the sizes of the system are

. . ) _infinite, thed-dimensional sums over the momentum vector
We consider the ferromagnetic mean spherical model wmh in Egs.(2.3b) and(2.39 transform into integrals over the

long-range interaction confined to a fully finite fst Brillouin zone. For example one has
d-dimensional hypercubic lattic€y of N=|Lg sites. The

model is defined by

1 A A
Ud,0(¢|A)=WJ dOh‘“fAdeln[(ﬁ

1 -A -
H=—§2 JiSS—HX S, (2.1)
ij i + wa’(qqu27 aqd)] (24)
where §; is the spin variable at sitg, 7;; is the interaction By analyzing the equation for the spherical fi¢&d30) in

matrix between spins at sitésand j, andH is an ordering the bulk limit it is easy to show that the system exhibits a
external magnetic field. The long-wave length asymptotiqgphase transition fod> o at the critical point,3., given by
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A A 1 culations in order to avoid receiving artificial, i.e., not exist-
BeJ0)p,= (2 )dJ dog J %ﬁ- ing in real systems, finite-siz&-dependent contributions.
- @olGu G- Gd This question is considered in detail[7]. In obtaining Eq.
(2.5 (3.4) the suggested there recipe has been appgkee Eg.
(27) in [37] and the discussion devoted tg. ifccording to
these findings, for the finite-size contributions in the follow-
Ill. SCALING FORM OF THE EXCESS FREE ENERGY ing we are going to send the cutoff to infinity.
AND THE CRITICAL CASIMIR FORCE In Eq. (3.4), ¢ is the solution of the corresponding spheri-

In the remainder we consider a svstem with a film geom- cal field equation that follows by requiring the partial deriva-
etrv L xoc®L which results after ytakln the I|m|t58 tive of the right-hand side of E@3.4) with respect tap to be
y ' 9 2 zero. Let us denote the solution of the corresponding bulk

t_a)tT(O)nsvxll_ed;jr §:|d igzlsr}g;lrztheFcc;{stehsvﬁgpgﬁngugﬁne:dri- spherical equation by... Then, for the excess free energy
y (per unit areait is possible to obtain from Egqg1.2) and

ables are taken to be equal to each other, igzA,i A i :
=1,...,d. ThenUy,(¢,L|A) becomes (3.4) the finite size scaling form, valid for<d< 20,

- FEB,H,LId) = AL Xi(x0, %), (3.6
Uao(¢,LIA) = 2 (2 T 1f dop - f dggin[ ¢ BH.Ld=8 £(X1, %2

with scaling variables

+ w,,(ql,qz, O] (3.1
= - 1/v

As it has been shown if50], a sum of the above typavith X1 = (B~ Bc) J(0)p,L (3.7a
0,(q)=|g|”,0<o=<2] can be evaluated using the Poisson
summation formula and the identity and

o] /—

In(1+2%) = af 9((1 —eE,(-%3), (3.2 Xo = HLA"\ B1T(0) p,s. (3.70
0 X

Here v=1/(d-o0) and A=(d+0)/[2(d-0)] are the critical
exponents of the spherical modélor oc<d<20, and
0<o=2). Notice that, according to the definitior{8.79
wp(D = 2 (3.3 and(3.7b), the subcritical regiof < T, corresponds to posi-
k=0 F(ak+'3) tive values ofx;. In Eq. (3.6) the universal scaling function
x¥(x;1,X%) Of the excess free energy has the form

whereE,(x) =E, 1(x), and

are the Mittag-Leffler functions. For a review on the proper-

ties ofE, 5(z) and other related to them functions, as well as
i ication i isti i i 1,1 1) 1

for their application in statistical and continuum mechanics, X¢(Xq, %) = Xz( _ _) — Zxa(YL— Vs

see Refs[50,5]]. The properties used in the current article Vi Yo
are summarized in Appendix A. 1
After some algebra for the full free energy density we get |Dd Sydo —ydoy - EKd,a(VL), (3.9

— _ } —d o
de,o(BIHiL) _de,O'(BYH) 2L ICd,U'(L ¢))1 (34) where theyL:¢LLU,ym:¢mLU; and

where q 4\ 1
_ d2p( 9 ain T2
fd,g—(ﬂnH) = lim fd'U(BYHJL)I Dd,u'_ 27T|:(47T) F(2>O'S|n< o >:| . (39)
L—oo
and In Eq. (3.8) y, is the solution of the spherical field equa-
tion for the finite system obtained by minimizing the free
12 energy with respect tg,
Kgo(y) = dIZE dxx‘d’Z‘lexp<— —)
(4mr) 4x )
X012 X, = 2 — Dy, ly¥ot- 2 x (o) (3.10
XEgp.1(= x79y), (3.5 1 Y do gy, G '

The main advantage of the above expression for the free o _ o
energy, despite its complicated form in comparison to EqFor the infinite system the corresponding equation is
(2.39, is the simplified dependence on the sizethich now

enters onlyvia the arguments of some functions. This gives x2 e

the possibility, as it is explained below, to obtain the scaling Xy ~[Dgoly”" (3.11
functions of the excess free energy and the Casimir force. It y°°

is worthwhile noting that under a sharp cutdff a special According to Eq.(1.1), the finite-size scaling function of

care has to be taken when performing finite-size scaling calthe Casimir force for the system under consideration is
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0.0 T . . 1.00 . — T
S osp T R 075 F _
s E
= «w S
2 g
= -0} =075 . S 050 - -
£ =100 ------- = N -
s =150 oo 5 RN
E ! 6=200 - E
- / =) 6=075
S - 025 o= 1.00
© / G=1.50
j 6=2.00
2.0 v'A I I 0.00 ’/ 1 1 L
1.00 1.25 1.50 1.75 2,00 1.00 1.25 1.50 1.75 2.00
Reduced dimensionality d/s Reduced dimensionality d/s
FIG. 1. Behavior of the Casimir amplitude as a functiordof FIG. 2. Behavior of the scaling variabjge as a function ofl at
the critical pointT=T.. We recall that the finite-size correlation
1
o+l (1 1 o= 1 length ¢ is related toy, via & =Ly, " [5].
Xcasimil X1, X2) = ) X\ -~ Xl(yL Yeo) . . . .
YL Yo have their own important physical meaning. We recall that
(d 1) » » is directly connected to the finite-size correlation length
Dy, S (ydo — yd'o) =Ly, ™ of the systenj5]. The results fow, (T,) are shown in
Fig. 2.
In Fig. 3 we present our results for the Casimir force
- E(d = DEqo(y0)- (312 evaluated at the bulk critical point of the model as a function

of d for some selected values @f. We observe that the
Note that in the limito — 2~ Egs.(3.6)«3.12 reproduce  Casimir force behaves in a different way depending on
exactly the corresponding ones for the case of the shoriyhether o is smaller or larger thamr=1. For o<1 it is
range interactiof12,13,13. In such a case the above equa- decreasing monotonically as a functioncyfwhile for o> 1
tions simplify greatly since therk, ;(z)=exp(z), and the it is not.
function Ky ,(y) defined in Eq(3.5 becomes In the following we turn our attention to the investigation
of the thermodynamic functions of interest as a function of
the scaling variable; for fixed d ando. Let us first consider
the situations where it is possible to obtain some results ana-
lytically.
whereK, is the modified Bessel function. Let us first consider the asymptotic forms of the excess
In the present article we will concentrate on the investi-free energy and the Casimir force in the subcritical region
gation of the behavior of the Casimir force and the excessi.e., T<T.). Taking into account that the@.e., whenx;
free energy in different regions of the phase diagram. We>1,x,=0), according to Eqs(3.10 and(3.11) y, —0",y..
will also evaluate some critical amplitudes for selected val-
ues of the parameterd and o. The analysis will be done
analytically for the cases where one can obtain simple ex-
pressions and is then extended numerically to cases whicl | ™. i
are not accessible by analytical means. =
First, let us note that when the interaction becomes more€ e
long-ranged, i.e.g decreases, the finite-size corrections due U T Y]
to the direct interaction between the surfaces delimiting theo
system becomes stronger implying an increase of the modua _
lus of the Casimir amplitud&;(0,0). In Fig. 1 we present £ *[ -7 e
the numerical evaluation of the Casimir amplitudes as a'(%
function ofd for some selected values af The results show 04 L7
that the amplitude is indeed an increasing functiornd adt
fixed o, and an increasing function af at a fixedd. Note
also that in accordance with the general expectations, the 03 = 1.'25 1.;0 1.'75 00
amplitudes are ne_gatlve' . Reduced dimensionality d/o
In order to obtain the amplitudes, one needs to know the
value ofy, (T) at the critical poinfT=T, that is the solution FIG. 3. The behavior of the Casimir force Bt T, as a function
of the equation for the spherical fie(@.10. These results of d.

4 di4 . -di2 [
= 79K go(1VY), 3.13

0.0 T T T

aaaa
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=0, as well as the asymptotiB13) of the functionKq ,(y,) 0.0
for small values of the argumerderived in Appendix B it
is easy to see that below the critical temperature

3
Xi(xq — %,0) = r<d>g(d) (314 =
— = - — — .
fAAL ’ 2’7Td/2 2 ’ B
and £
od-1)_(d L:J
XcasimifXg — ,0) = = (—M)F(—>§(d)- (3.19 H 6=075d=125
27 2 2 o= 1.2(),2: 1,50 =------
6=150,d=2.00 -------- -
The above results reflect the dominating contribution of the ©=200,d=3.00 -
Goldstone modes in the subcritical-regime of arinO©
model—both the excess free energy and the Casimir force ' . o . o

scaling functions do not tend exponentiallytirnto zero, but
to finite constants. Fow=2 these constants coincide with
those known from short-range syste(ase, e.g[15] and the FIG. 4. The universal finite-size scaling function of the excess
references cited thereirNote also that, in contrast with sys- free energyXi(x;,0) from Eq. (3.8) as a function of x;~ (T
tems with real boundaries, the direct interspin long ranged TJL”, for some selected values ofat zero external magnetic
interaction belowT, does not lead to f(o-D) contribution, field. One observes that, in full accordance with the corresponding
which is well known from studies of van der Waals systemsstatement from Sec. Wcasimi(X1,0) is @ monotonically increasing
exhibiting wetting phase transitiorj89,52. This is due to function of the temperatur& regardiess of value o
the application of periodic boundary conditions, i.e., the sys-
tem under consideration lacks real physical boundaries. ~ field. The corresponding data is presented in Figfo4 the

Let us consider the critical behavior of the forceTor T, ~ €Xcess free energyand in Fig. 5(for the Casimir forcg
in a bit more details. Then, whexp=0 andx; — -« from  While the scaling function of the excess free energy is mono-
Egs.(3.10 and(3.11) one obtaing/, =Y..(1+eq,), where tonic regardless of the used valuesdoéind o, the behavior

of Casimir force depends strongly on the range of the inter-

Scaling variable -x,

er = Ao (3.16) actiono. Foro>1 it is monotonically increasing as it can be
de (% - 1)|Dd Sydet ' seen from the case=2, corresponding to short range inter-
' action, and the long-range case wit¥1.5. Foro=1 the
and monotonicity changes and-4imi(X1,0) becomes decreasing
x| \& for values ofc<1. As example we show its behavior for
w:( ) (3.17  ¢=0.75.
Do We close this section by presenting the outcome of the
Therefore, the leading behavior of the scaling function of thelumerical analysis of the behavior of the scaling functions of
force in that region is the excess free energy, shown in Fig. 6, and that of the Ca-
Xcasimir™ ~ Ad,zryo_ol = Ada[(:Bc 00 T T

- B)J(0)p,/|Dy, |17 ¢ L™, (3.18

where

Ad,f%r(md—l). (3.19

0.2
Equation (3.18, valid for 0<o<2, implies that above

Casimir force X, (x,,0)

Te, Feasimi=—X: [t} 7L7), with y=0/(d-0), and X,>0, al oS ek —
i.e., the force remains attractive and decays in a powér-in- 03 e 6=1.50,d=2.00 T
and not in an exponentially-ih-way, as it is in systems with ©=200.d=3.00 -
short ranged interactions. This behavior is in full correspon- | .
dence with the long-ranged character of the interaction.  -04 - — ' -

.. . . . -10 -6 -2 0 2 6 10
Similar also, as it has been recently established, is the beha\ Sealing variable -.x
ior of the Casimir force and the excess free energy in sys- - o
tems with van der Waals type interactif8v] (see alsq38]), FIG. 5. The universal finite-size scaling function of the Casimir
despite that their critical exponents are those of the shortorce X gmi(x1,0) as a function of the scaling variablex— (T
ranged systems. -ToLY", at zero external magnetic fiekl=0. One observes that, in

The obtained analytical results are supported by numerifull accordance with the corresponding statement from Sec. V,
cal analysis of the expressions for the scaling functions of th&c,simi(X1,0) is a monotonically increasing function of the tem-
excess free energy and the Casimir force at zero externakratureT (for o> 1) and possesses a complex behaviordet 1.
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0.0 IV. CASIMIR (SOLVATION) FORCE ALONG THE PHASE
COEXISTENCE LINE
~, 01 Here we investigate the behavior of the Casimir force
S # along the lineH=0 whenT <T,. This is a line of a first order
ol : phase transition with respect to the magnetic fieldThe
& 02 f finite-size rounding of the first-order transitions in(rQ
g models has been already studied by Fisher and Privman in
g [53] for a fully finite and cylinder geometries. Later their
% 034 ooOI A= T ] predictions have been verified in details for the spherical
A 6=1.50,d=200 model system with such a geometry[Bd], while in [55,56
0=2.00,d=3.00 - their arguments have been extended to a geometry of the
04 i type L49" x % whered’ has been chosen so that no phase
! ! ! transition of its own exists in the finite system, i.d/<o
0 20 40 60 80 has been supposed. Here we extend these investigations to
Sculing variable x, cover also the casat =o andd’ > ¢ in systems with a film

geometry, i.e., when’=d-1. We will be only interested in
FIG. 6. The universal finite-size scaling function of the excessihe pehavior of the Casimir force.
free energyX;(0,x,), for some values ofr, as a function of the For T<T, and smallH Egs.(3.6~3.12 are still valid,
scaling variablex,~HLA"* at the bulk critical pointT=T.. One but there the limity, <1 has to be takefi.e., we suppose
qbservest(O,_xz) is a monotonically increasing function of the that x1>x§). As it is clear from Eq.(B13), then there are
field H for arbitrary o~ three subcases to be considered.
(i) The case &¢1<o. Then in the finite system there is

simir force, shown in Fig. 7, as a function of the scaling no phase transition on its own. For the excess free energy

variablex, at the bulk critical temperature. One observes thafne obtains
the excess free energy is a monotonically increasing function P
of the external magnetic fieldl independently of the range  f¥(B,H)=-— WF(d/Z)g(d)L‘(d‘l) + BmpHL
of the interaction. However the Casimir force im@nmono- .
tonic function ofH andhas a minimum at»>¢ 0 which depth 1lmy m o my m
depends of the parameter The minimum is found to be at X{l - E(F + _) * 2—_<_ - _)}

L My d=-)\m. my
X,=0.084, 0.145, 0.263, and 0.416 fex2, 1.5, 1, and 0.75,
respectively. So, as long as goes smaller the minimum (4.2)
becomes deeper. Indeed the ratio of the Casimir force evalyyhere
ated at the minimum to its value &=0 is a decreasing

function of o. It is given by 1.017, 1.073, 1.215, and 1.513 m. IDg-1.0 2+ 1 |Dg-1 4.2

for 0=2, 1.5, 1, and 0.75, respectively. mo V P P

Here m =H/[p,J(0)¢] is the magnetization of the finite
system,my=y1-T/T, is the spontaneous magnetization,
andxm:,Bnb(T)Lg‘L"lH, which has the meaning of the ratio
of the total magnetic energy in the correlated volume
VCOF:Lgf‘l to the thermal energkgT per degree of free-
dom, is the scaling variabléWe recall that in the spheri-
cal model the true finite-size correlation lengghis equal

to ¢~¥7 [5,56].) Next, it is easy to see from Eg4.2) that
Xn=0(1) involves H=O(L™?1*-9) " that is the scale on
T which the jump in the bulk magnetization is rounded off.

Casimir force X, (0.X,)

02 03 7 4
' 0' ; 4 From this observation and from E{4.1) one obtains that
6=075,d= the H dependent correction to the Casimir force is then of
; iy the order of L™7"***~9  [Note that o/(1+o—-d)>d for
03 F 6=2.00.d=3. . d> o, and, so, the term proportional tbin Eq. (4.1) will
0 2'0 4'0 6'0 indeed contribute as a correction towards the Casimir

force)]
(i) The case &1=¢. This is the borderline case between
FIG. 7. The universal finite-size scaling function of the Casimir the one when in the finite system there is no phase transition
force Xcasimis fOr some values ofr, as a function of the scaling Of its own (for d-=1< o) and the one in which in the finite
variablex,~HL2/" at the bulk critical temperaturé=T,. One ob-  System there is such a phase transitifon d—1> o). In this
serves thaKc,simi(0,Xo) is not a monotonically increasing function case an essential singular point exists in the finite-size sys-
of the fieldH for all values ofo <2 including the short-range case. tem atT=H=0. For the excess free energy one now obtains

Scaling variable x,
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. o -1 my T<T., one will have an Ising-like system. In this regime
f(B,H) =~ mr(d/Z)é(d)L tAMHLY 1= 1, y.>1,y.>1, and the Casimir force will be of the order of
- L~ [see Eq(3.18)] under periodic boundary conditions.
(4.3 (If the system was possessing real bounding surfaces like,

where say, under Dirichlet-Drichlet boundary conditions, one would
expect that the corresponding contribution in the force is of
m_ \/ 1 1 2+ 14—+ 1 the order ofL™".)
my (477)0/2F(U/2)7m (477)‘7/21—‘(0'/2)7m

V. MONOTONICITY PROPERTIES OF THE EXCESS
(4.9 FREE ENERGY AND THE CASIMIR FORCE

andx=Bmo(T)HLE/In(L/&). The above equations are et us denote byg, (x,,y) and g.(x,,y) the right-hand
to be compared with the previous case. One observes, thaide of Egs.(3.10 and (3.11), respectively. Now we prove
the main difference is the existence of logarithmickin- that (i) g, (X,,y)>0.(X,,y) and (i) that g, (x,,y) and
dependence that is introduced via the scaling field Varigm(xz,y) are monotonically decreasing functionsyof
ablex,. As a result the rounding of the jump in the mag- (i) First, let us note thak, 4(-x) is a completely mono-
netization takes place on a scale given b§ ionic function ofx=0 [57-6Q for 0<a<1 andB= a. (In
=L""exp(-constL), i.e., the scale in this case is exponen-|57) this property was shown to hold fd&, ;(-x) =E,(-x)
tially small in L. and was later extended B, 5(—x) in [58] and[59]; see also

(iii) The case &1>o. In this case there is a true phase [60].) This means that for ah=0, 1, 2, 3,... one has
transition of its own in the finite system at soriig =T, ' e

—-eL7' i.e., no rounding of the jump of the magnetization is d"E s(=X)

1 ’ —_ @,
possible. One only observésdependent corrections of the =" dx =0, x=0,
finite-size magnetizatiom; with respect to the spontaneous

O<a=1l pB=a.

magnetizationm,. One finds that the crossover frodnto d (5.9
—1 critical behavior happens at with Then, fromn=0 it immediately follows thatE, ,(-x)>0
D2 1 whenx=0. Now, from Eqs(3.10 and(3.11), it immediately

(4.5  follows thatg (X2,Y) > g..(X2,Y).

e= ’
(2m) I'(df2) BT (0)p, (ii) The required property follows from the monotonicity

and, whenH|L" <1, of the functionE, ,(—x) for x=0 and the explicit form of the
right-hand sides of Eq$3.10 and(3.11).
feX(B,H) = - LF(d/Z)g(d)L‘(d‘lu,BmoHLi Having proved(i) and (ii), it is easy to understand now
' 2792 Lo’ that for any given values, andx, of the scaling variables

(4.6) the solution of the spherical field equation for the finite sys-
tem will be larger than that for the infinite system, i.e.,

with YL (X1, %) > V..(Xg, %o). (Since the correlation lengths in the
ey 1 finite and the infinite system agg =y; " and ¢,=y; [5],
= p 7 , 4.7 correspondingly, the physical meaning of the above result is
2(2m)°T(di2) ,Brné(T)j(O)pg that the correlation length of the finite system is always
andm,_ =my(1-a/2). smaller than that of the infinite oneWe are then ready to

Finally, we would like to note that in @) systems one Prove the following. _
observes foff < T, in addition to the rounding of the jump of _ (A) FOr x,=0 and »%=0 the excess free energy scaling
the order parameter also rounding of the spin wave singulariUnction is negative, i.eX;(x,=0,x,=0)<0. _
ties. According to the general theof$3,54, their rounding (B) The excess free energy scaling functiqxx,) is a
occurs on the scale for which=|H|L"=0(1). As it is clear monotonlca_lly increasing function of the temperature T and
from Eq.(3.7) [and taking into account that i< T, one can  the magnetic fieldH.
rewrite X; as x,=Amy(T)2p,J(0), with x,;>1] the scale on Let us start with statemer#). o
which the rounding of the spin wave singularities sets in (A From the explicit form of the Eq3.8) it is clear that
involves thatx, ~x3 there. Then, in this regime, the solution the statementA) will be true if E, ;(-x) =0 whenx=0. The

of the spherical field equations for the finite and the infinite!@St follows from Eq(5.1) for n=0, and, thusX;(x;, %) <0.

system (3.10 and (3.11) will be againy, =O(1) and y.. Let us now prove the statemeti).

=0(1). Sincex; andx, can be expressed from Eq8.10 (B) From Eq.(3.8) one obtains

and(3.1)) in terms ofy, andy.., we conclude that, according aX; 1

to Eq.(3.12, in the regime in which the spin waves are of FV 5=~ <0, (5.2

importance, the Casimir force will bEc,gimi=0(L™), pos-
sessing a nontriviaH dependence. If one would like to re- and
veal more on this dependence the numerical treatment is un-
avoidable. Note that when the field is strong enough to IX_ (1 1

. L ) =Xo > 0. (5.3
suppress the spin-wave excitations, i.e., whes1 and %o Ve YL
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Equation(5.2) implies thatX;(x;,X,) is a monotonically in- VI. DISCUSSION
creasing function of Twhereas Eq(5.3) states thait is a ] . ]
monotonically increasing function ¢#i| too. In the current article we consider the behavior of the ex-
Using (B) one can now prove the following. cess finite-size free energy and the Casifsalvatior) force
(C) The excess free energy scaling function is negative foln & classical system with leading long range interactions in
any T and Hi.e., X{(x;,X) <0 for any % and %. the limit n— <0 of the Q(n) models(i.e., within the spherical

|ndeed’ from the monotonicity proper(B) and from(A) mOdeb. In this I|m|t, the model haS- the pecullarlty of being
it is clear that in order to prove) it is enough to show that exactly solvable and in the same time the ability to describe
it holds for values ofT above T, i.e., wheny, >1 andy,,  ina convincing way the paslc features of the physical pehav-
>1. Then, from Egs(3.10) and (3.11) and the asymptotic ior of O(n) systems with finite number of component spins
(B14) one obtaingy, =y..(1+¢),0<e<1, where This is very useful if one later tries to investigate more real-
istic models using either numericéay Monte Carlp or

= 84,0 (5.4) more elaborate _analytical_ techniques. Fyrthermore,_ as it has
y2 I:ZX_§ +|Dg |yd/u-1(g _ 1) + 26%,,,]' ’ been already pointed out in the Introduction the scaling func-
Ly e v tions X’ (x)/n of the Casimir force for the 3D IsingY,
Next, from Eq.(3.8) it follows that Heisenberg and Spherical models with short-ranged interac-
tions practically coincidg15] if x=L/¢=2, where¢ is the
X((Xq, %) = — }%(1 —£)<0. (5.5) true bulk correlation length. Ope might expect the same to t_>e
o true also for the case of leading long-ranged interactions in

Thus th f is indeed al i such systems.
us the excess Iree energy IS indeed always negatve. In the current treatment the dimensionalityf the mod-

FIIDnallIy, we>p1)rtc;]ve éhat. theffolloyvmg{. tive. ie. it els and the parameter controlling the range of the interaction
(D) For ¢=1 the Casimir force Is always negative, i.e., | o are chosen so, that the hyperscaling is kept valid, i.e.,

';yst;r?]rce of attraction between the surfaces bounding thecr<d<2<r is supposed. In this regime the critical exponents

We start by multiplying Eq(3.11) with y.. and Eq.(3.10 depend onr. We demonstrate that, despite of the choice of

_ 4 . o, the excess free energy scaling functin(see Fig. 4 and
with y;, and then adding the results together. One obtains Fig. 6) is a monotonic function of the temperatdFend the

1 1 " v magnetic fieldH, with X; being always a negative function.
X (YL = Yee) = %5 v Dyl (YL 7= ye” Surprisingly, to a given extend, the above properties do not

L= hold in such a general fashion for the Casirgplvation
force(see Fig. 5 and Fig.)7This is in line with the results of
- y'-d_yL’Cdﬂ(yl-)' (5.6) Sec. V where we show analytically that the force is attractive
forany T ando=1, as well as for anyf =T, if o<1. The
Inserting the above expression in K§.12), one obtains monotonicity of the force turns out to depend on For

1 1 1 o example, ife>1 atT=T, andH=0 the force is an increas-
XcasimilX1,Xo) = x%(— - —) - —<1 - —>|Dd U|(yf"’— Vo) ing function of T andL™?, while for <1 it is a decreasing
YU Y=/ 2 d/> = function of bothT and L™ at this point[see Eq.(5.8) and
1 o-1 d Fig. 5]. In addition, one derives that far=T, the minimum
- E(d — DIqo(yL) + TyLd_ICd,o(yL)- of the force isnotat H=0 (see Fig. J. Indeed, aff=T, the
o minimum has been found to be at soffirdite value of the
(5.7 scaling field variablex,~HL2"”. For 0=2, 1.5, 1, and 0.75
the minimum atT=T, is found to be atx,=0.084, 0.145,
0.263, and 0.416, respectively. Such an occurrence of a force
minimum for a nonzero bulk field has also been reported for
the case of+, +) boundary condition$46,47. Here, in this
Section, we provide more details for the universal finite-size
scaling function of the Casimir forc¥e.qimi(X1,X2) present-
ing the numerical results for it as a function of bothand
X,=0 in Fig. 8. There the effects due to both the temperature
and the magnetic field are demonstrafee recall thatx;
~(T-THLY" x,~HLA"]. We observe that foif <T, and
9 o-1 H# 0 a valley shows up in the vicinity of the critical tem-
a_xlxc:ﬂsimn(xlz 0x=0)=- TyL,O (5.9 perature that disappears for temperatures far away from the
critical point. More precisely, one observes that there exists a
where from we conclude, that a=T, the Casimir force is finite valuex} of x4, such that for any<;>x1>O there is a
an increasing function off for o>1 (see Fig. % and a local minimum of the force at some finitg , i.e., atH
decreasing function of wheno <1 (see Fig. 5 Therefore, #0. Forx1>x*1 there is no such minimum at nonzekb In
at the critical point the monotonicity of the force changes as~ig. 8 the last is shown for the cases0.75, 1, 1.5 andr
a function ofo at 0=1 where we have an inflexion point. =2 (the short-range cageNote, that foro=0.75 one needs

Since, according to what already has been proyem:y..,
and Cq,(y ) is a positive and monotonically decreasing
function of y, [the last follows from the explicit form of
K.y given in Eq.(3.5 and the property5.1) of E, 1(X)
for n=0 andn=1], from the above expression one immedi-
ately confirms the validity of statemen{D). In addition,
from Eq.(3.12) it is easy to see thaXcsimilX1,X2) <0 also
for o<1 if x,<0, i.e., forT=T,. Furthermore, from Egs.
(1.5 and(3.12) it follows that
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. APPENDIX A: SOME PROPERTIES OF THE MITTAG-
i LEFFLER TYPE FUNCTIONS

-0.15

The Mittag-Leffler type functions are defined by the
power serie§51]:

- Z
Ea’B(Z)—g)m, a,>0. (A1)

They are entire functions of finite order of growth. The func-
tions are named after Mittag-Leffler who first considered the
particular casg8=1. These function are very popular in the
field of fractional calculugfor a recent review see R¢b1]).

One of the most useful property of these functions is the
identity [51]

1 o0
—— = | dxeFE, 4(-xY2), A2
142 f ; a8 ) (A2)

which is obtained by means of term-by-term integration of
the serieg(Al). The integral in Eq(A2) converges in the
complex plane to the left of the line R&*=1,|argZ
< %om-r. The identity(A2) lies in the basis of the mathemati-
cal investigation of finite-size scaling in the spherical model
with algebraically decaying long-range interacti@ee Ref.
[5] and references thergin

In some particular cases the functioBg 4(z) reduce to
known functions. For example, in the case corresponding to
the short range case we have

E14(2) = exp(2). (A3)
Setting z=y™“,y>0, and x=ty, we obtain the Laplace
transform
y’ = f ’ dt eYtPIE, 4(—t%) (A4)
1+y0{ 0 ’

from which we derive the useful identity

force as a function of scaling variablegsandx, for some values of 14z

the parametes and the corresponding values @f The visualiza-

tion is limited to positive values of, since the function is even in by setting 8= c.

H. The asymptotic behavior for large arguments of the
Mittag-Leffler functions is given by the Lemni&1].

to go deeply in the subcritical region to find out where ex- Let0<a<2,8 be an arbitrary complex number, amdbe

actly the valley vanishes. In the short-range case2 we  a real number obeying the condition

established that; =0.28.

. e . . L. l o«
FIG. 8. The universal finite-size scaling function of the Casimir f dx expl- XZ)Xa_lEa,a(— X7) (A5)

1 .
—am < y<min{m, am}.
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& 1 [~
1 _(1-Bla z + -p-1 u'= f dt t e ut (B6)

a[;(z) Z ez E F(B ) O(|Z| ) F[V] 0

(AB) and
At y<l|argZ <, ” a\Hv
y<largz<m J u“ln(a+bu’) = (—) — (B7)
o _k 0 b/ sin(wulv)
E ==> ————+0(|77PY. A7
a.ﬁ(z) gl (B~ ak) (|Z| ) (AT) to yield the result
2(d = 1) "Dyg-g, .y V. (B8)
APPENDIX B: ASYMPTOTICS OF THE . . . . .
FUNCTION Ky o(y) For the evaluation of the first integral in the right hand

side of Eq.(B5), we note that the two terms in the square

Here we will evaluate the asymptotic behaviors of theprackets in Eq(B5) cannot be integrated separately, since

auxiliary functionCy,(y) used in the expression of the free they diverge. Nevertheless, it is possible to outwit this diver-
energy and the quantities descending from it. It is defined byence, by transforming further E(B5) by adding and sub-

1 tracting from the functiork,, ,.,(2) its asymptotic behavior
K dx x42-1 (—) -1 at small arguments, leading, after some algebra, to
d,(r(y) 2(4 )d/zf XX |:A 4x g g g
y77_d—l)/2 C 1 Y

X Eyp.1(— X7?y), (B1a) 2= o 277 m =2d7Dg,y"7 + Rq,ly). (B9a)

where Here we introduced the notations
2
A(u) = |§oo el (B1b) Cd,o:f dx xl2-di2- 1/2[ 2 X7 \/é} d-1<o,
- 1=1
Using the identity (B9b)

Ea,l(_ Z) =1 _ZEa,a+l(_ Z), (82) and
it is possible to write down EqB1a) in a more convenient -2 = X
form, which will allow us to extract the asymptotics of the Raoly) = oy —> dx Xo12-dI2-17g7x]
function under investigation. After some algebra one obtains 2m? i3

XU/Z ) 1
— di2 _Z X| E wl - - .
ICd,o'(y)_O-']T F( )g(d) Zd U(y) (Baa) l 012,012 1( y(z,n.)a' l—w[g+ 1]
where we have introduced the auxiliary function (B9c)
1 Collecting the above results, we obtain
Id,o—(y) (4 )dlzf dx )g/Z —-d/2-1 A(Z) -1
g Kaoly) = om d’zr( )z(d) o(d=1)7"Dgg oy 4V
X Eo’/2,o’/2+l(_ X(rlzy) . (B3b)

Ad-1r2
Now, settingx=2z(27)~2 and with the help of the identity WT[O’/Z] +0d Dy ,y¥” ngﬂ(y).

Alu) = \/EA(f>, (B4) (B10)
u u .

The constanC, ,, introduced in Eq(B9b) is the so-called

we rewrite Eq.(B3b) (after some algebjan the form Madelung constarﬂsee e.g[62,63)
7_r(d—l)/zfoc [ \/; } [[(o-d+1)/2,8%
T _ dx T2-/2-112 N S — o=
aoY) =Yy 2n” J, X A(X) X QTO lel |-+ D72
N ) (=2 o 2

XE - IN(oc-d+1)/2,8°]
"’2"”2*1< Yame) "V ny - J A= -ar2 » d-1<o,
o al2

Xf dx xf/Z-d/Z-l/ZE(r/z’(r/zﬂ(_ y(27)”> (B5) (B11)
0

wherel'[a,X] is the incomplete gamma function. It has been
The integral in the second term of the right-hand side ofshown that this constant has a remarkable property of sym-

Eqg. (B5) can be evaluated exactly with the help of the iden-metry [63], which relates its values in the cade 1< to
tities those in the casd—1>¢. On the other hand, it has been
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Equation (B10) is the general form of the functions
Kq(y). According to Eqs(B11) and(B12) it can be used to
investigate the critical behavior of the system for any dimen-
sion less thaml.
For small y the asymptotic behavior of the function

shown thatCy, can be expressed in terms of the analytic
continuation, oved-1< ¢, of (for details seg63])

d-
Cyo=2m 1/2+<f-dr< )g(d o), d-1>0.

(B12)  Kq,(y) is easily deduced from E@B10). It is given by
|
p
i ( )((d) —| o yld-vle, 0<d-1<o,
¥ d-1

Kaoy) = S Wi ( >§(d) 2y[(4m) ol [o/2]] (1~ Iny),  o=d-1, (B13)

ir(g>§(d)—yw(d_l)/2 Cao_, 4Da-tol oy
kwdfz 2 (2m)? I'ol2] d-1 ’

For largey the asymptotic behavior of the functidgy ,(y) is obtained by substituting the largebehavior of the functions
E, X [given in Eq.(A7)] in the definition(B1a). After some calculations one ends up with

ICd,a(Y) = ad,ay_ll

O<o<d-1.

(B14a
where

_ 2 T[(d+ 0)/2]
77 792 |- 0/2]|

{(d+ o). (B14b
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